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Abstract
The extracellular calcium-sensing receptor (CaR), a ubiquitous class C
G-protein-coupled receptor (GPCR), is responsible for the control of calcium
homeostasis in body fluids. It integrates information about external Ca  and a
surfeit of other endogenous ligands into multiple intracellular signals, but how is
this achieved? This review will focus on some of the exciting concepts in CaR
signaling and pharmacology that have emerged in the last few years.
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Introduction
Alteration in the activity or function of the extracellular Ca2+ 
(Ca2+

ext
)-sensing receptor (CaR; also named CaSR or CaS) is 

linked to several genetic disorders of calcium homeostasis1, such 
as familial hypocalciuric hypercalcemia (FHH) and neonatal severe 
hyperparathyroidism (NSHPT)2, both caused by loss-of-function 
mutations of the CaR gene, and those that occur as a conse-
quence of gain-of function mutations of the CaR, e.g., autosomal 
dominant hypocalcemia (ADH) and Bartter syndrome (BS) 
type V3–5. However, the CaR is also a factor in other more com-
mon pathologies that include chronic kidney disease6, cancer7, 
cardiovascular pathologies8–11, and Alzheimer’s disease12. For 
a complete survey of CaR’s function in molecular physiology 
and pathology, readers are referred to some of the many recent 
reviews on the topic13.

We will first address when and how Ca2+
ext

, the primary ligand for 
the CaR, changes in tissue spaces. Ca2+ is, however, just one of 
the many activators of this fascinating receptor; the CaR is “built” 
to interact with a dizzying array of other orthosteric agonists and 
also allosteric modulators that influence the receptor’s response to 
calcium ions (Table 1). These endogenous ligands activate mul-
tiple intracellular signaling pathways, often in the same cell type 
(Figure 1). However, the CaR can discriminate between its 
ligands to preferentially activate a particular subset of signaling 
pathways at the exclusion of others through the phenomenon 

known as biased agonism. In addition, CaR signaling can be 
dynamically regulated through agonist-dependent trafficking of 
intracellular receptors to alter the net amount of the receptor at 
the plasma membrane. We will address how certain ligands act as 
“pharmacoperones” to shepherd the receptor to the cell surface. 
All of these factors serve to fine-tune the activity of the recep-
tor. Finally, we discuss the incredible potential of this newfound 
information to aid in the design of novel, smarter, drugs able to 
rescue mutated receptor mislocalization and function, and bias 
CaR-mediated signaling towards particular pathways.

Extracellular Ca2+ fluctuations and Ca2+ microdomains
Systemic Ca2+ levels (~1.1–1.3 mM) are under stringent homeo-
static control exerted by organs such as the parathyroid glands, 
bone, renal system, and intestine14. Nonetheless, local fluctua-
tions in Ca2+

ext
 levels have been identified and characterized in the 

restricted volume of interstitial fluids bathing cells of many tissues15. 
The amplitude and shape of these Ca2+

ext
 fluctuations is thought to 

represent an autocrine/paracrine form of cell-to-cell communica-
tion. Pharmacological agents directed at the CaR therefore work 
upon a complex backdrop of changing external [Ca2+]. This has the 
potential to markedly affect the way in which a drug (particularly 
those in the class of the allosteric modulators) acts on the receptor 
in any given moment. Knowledge about these local fluctuations in 
calcium remains, arguably, among the most significant barriers to 
fully understanding CaR pharmacology in vivo.

Table 1. Principal orthosteric agonists and allosteric modulators of the calcium-sensing receptor.

Orthosteric agonists (type I 
calcimimetics)

References

Inorganic divalent and 
trivalent cations

High potency: Gd3+; Eu3+; Tb3+ 
Intermediate potency: Zn2+; Ni2+; Cd2+; Pb2+; Co2+; Fe2+ 
Low potency: Ca2+; Mg2+; Ba2+; Sr2+; Mn2+

125–128

Polyamines Spermine, spermidine, putrescine 129

Aminoglycoside antibiotics Neomycin, gentamycin, tobramycin, poromomycin, 
kanamycin, ribostamycin

130–132

Basic polypeptides Poly-l-arginine, poly-l-lysine, protamine, amyloid  
β-peptides

133–135

Allosteric modulators (type 
II calcimimetics) 

L-amino acids Phenylalanine, tryptophan, tyrosine, histidine 136–138

Glutathione analogs γ-glutamyl-tripeptides: glutathione, 
S-methylglutathione, 
S-propylglutathione 
γ-glutamyl-tripeptides: 
γ-Glu-Ala, γ-Glu-Cys

139–140

Small molecule calcimimetics First generation: 
NPS R-568, NPS R-467

141,142

Second generation: 
cinacalcet

143–145

Third generation: 
dibenzylamine calcimimetics, R,R-calcimimetic B,  
AC-265347

94,146,147

Small molecule calcilytics NPS 2143, Calhex 231, ATF936, AXT914, ronacaleret, 
NPSP795, SB-423557, SB-423562

97,142,148–150
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Figure 1. Signal transduction mediated by the extracellular calcium-sensing receptor (CaR). Schematic of the dimeric extracellular 
CaR at the plasma membrane. A complex network of intracellular transduction cascades is activated by numerous orthosteric agonists 
or allosteric modulators converging either on the bi-lobed venus-flytrap domain or on the seven transmembrane domain of the CaR. For 
clarity, two G-protein-coupled receptors (GPCRs) are shown; this is not meant to imply that the ligands depicted are linked preferentially 
to a particular intracellular signaling pathway, although see section in text on biased agonism. Abbreviations: AA, arachidonic acid; AC, 
adenylate cyclase; Akt, protein kinase B; ATP, adenosine triphosphate; CaM, calmodulin; CaMK, Ca2+/calmodulin-dependent protein kinase; 
cAMP, cyclic AMP; DAG, diacylglycerol; eNOS, endothelial nitric oxide synthase; ER, endoplasmic reticulum; ERK 1/2, extracellullar-signal-
regulated kinase; Gαs, Gαi, Gαq, Gα12/13, α subunits of the s-, i-, q-, and 12/13-type heterotrimeric G-proteins, respectively; iNOS, inducible 
nitric oxide synthase; IP3, inositol-1,4,5-trisphosphate; JNK, Jun amino-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK 
kinase; NO, nitric oxide; p38, p38 mitogen-activated protein kinase; PA, phosphatidic acid; PHP, pharmacoperones; PI3K, phosphatidylinositol 
3-kinase; PI4K, phosphatidylinositol 4-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLA2, phospholipase A2; 
PLC, phospholipase C; PLD, phospholipase D; RhoA, Ras homolog gene family, member A; SOC, store-operated Ca2+ channel.

Many factors are believed to participate in the generation of physi-
ologically relevant Ca2+

ext
 changes, e.g. a) intracellular Ca2+ sign-

aling events, b) Ca2+ extrusion via discharge of calcium-enriched 
granules, and c) synchronous opening of voltage-operated Ca2+ 
channels. Below, we describe briefly how these extracellular  
microdomains can be measured and give examples of how they are 
generated.

Measuring extracellular Ca2+ levels
Historically, real-time measurements of Ca2+

ext
 changes in close 

proximity to the plasma membrane have been hampered by the lack 
of proper experimental tools to physically access these restricted 
compartments in intact tissues and by difficulties in measuring 
[Ca2+] fluctuations against the background of mM Ca2+ concen-
trations normally present outside the cell. Although many dif-
ferent experimental approaches have been proposed to quantify 
Ca2+

ext
 fluctuations in a number of diverse tissue models, each of 

them presents limitations with regard to either sensitivity or spatial  

resolution. For example, Ca2+-sensitive small molecule fluores-
cent indicators have proven useful to visualize the temporal/spatial 
dynamics of Ca2+

ext
 changes, since they provide sensitivity, time 

resolution, and access to limited spaces16–24. However, these meth-
ods require experiments to be performed in non-physiological 
conditions such as low or nominally free Ca2+

ext
 because of the 

relatively high Ca2+ affinity of the available fluorophores. For 
example, Tepikin and Petersen introduced the droplet technique25–27 
to reliably quantify Ca2+

ext
 changes induced by active Ca2+ extru-

sion through the plasma membrane Ca2+-ATPase (PMCA) of 
acinar cells. Fluo-3 was used to characterize changes in Ca2+

ext
 in 

small clusters of exocrine gland cells maintained in a tiny droplet 
of solution covered with oil to prevent evaporation, but this method 
could only be used under Ca2+-free media conditions on account 
of the high affinity of the Ca2+ indicator.

We, as well as others, have used Ca2+-selective microelectrodes 
extensively to directly record the profile of changes in Ca2+

ext
 in 

PKC
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the restricted domains of different experimental tissue models  
following Ca2+-mobilizing stimulation28–38. As described further 
below, we also used Ca2+-sensitive microelectrodes to measure real- 
time Ca2+

ext
 changes induced by the glucose-dependent discharge 

of Ca2+-rich insulin granules39. Ion-sensitive microelectrodes 
present certain advantages. First, measurements of Ca2+

ex
  

changes under physiological conditions are allowed owing to the 
availability of Ca2+-sensitive resins with affinities in the μM and 
mM range. In addition, it is possible to record Ca2+

ext
 changes for  

hours without technical drawbacks such as the bleaching of fluo-
rescent indicators. However, this approach requires a high level of 
patience and expertise and samples only one small region of the 
tissue, so it is not amenable to high-throughput measurements. 
Moreover, it is difficult to execute in many tissue types. This is an 
arena in which further developments would be welcome.

Origins of extracellular Ca2+ microdomains
Intracellular Ca2+ signaling events. Cells facing restricted  
diffusion spaces can experience Ca2+

ext
 fluctuations during intracel-

lular Ca2+ signaling events as a result of activation of Ca2+ efflux 
(e.g. by PMCA and/or Na+/Ca2+ exchanger) and influx (e.g. by 
store-operated channels [SOCs]) across the plasma membrane. 
The genesis of significant Ca2+

ext
 microdomains requires either dif-

ferential dynamics or polarized asymmetry of Ca2+ influx/efflux 
mechanisms40–43. For example, we found that stimulation with 
Ca2+-mobilizing agonists resulted in substantial local increase in 
Ca2+

ext
 at the luminal face and a comparable depletion at the serosal 

aspect of gastric acid-secreting cells38. An increase in [Ca2+] in the 
gastric gland lumen is due to activation of Ca2+-ATPase, which is 
highly expressed at the apical membrane of these cells, where it 
co-localizes with CaR38.

Ca2+ extrusion via discharge of calcium-enriched granules. Very 
high Ca2+ concentrations have been measured within secretory 
granules44–46. For example, insulin granules from rat insulinoma 
have a granular concentration of Ca2+ between 60 and 120 mM47. 
Therefore, one can assume that exocytotic events may generate 
consistent increases in Ca2+

ext
. Recently, we showed that the stimu-

lation of insulin secretion by high glucose and other secretagogues 
resulted in late elevation of Ca2+

ext
 within rat insulinoma (INS-1E) 

β-cell pseudoislets, as measured with Ca2+ microelectrodes39. Ca2+ 
extrusion via Ca2+-enriched granules has also been proposed for 
a number of different cell types that undergo exocytosis such as  
salivary gland cells22, bovine adrenal medullary cells48, neurohypo-
physeal nerve endings49, and sea urchin eggs50.

Synchronous opening of voltage-operated Ca2+ channels.  
Excitable cells have, in addition to the above-mentioned mecha-
nisms, a variety of voltage-dependent Ca2+ entry pathways that 
might impact Ca2+

ext
 during their physiological activity51–53. In the 

central nervous system, synchronous opening of voltage-gated 
Ca2+ channels (VGCCs) can stimulate significant reductions in 
Ca2+

ext
54,55. Pumain and Heinemann recorded Ca2+

ext
 reductions  

from a basal level of 1.25 mM to as low as 0.08 mM in rat  
neocortex following the application of excitatory amino acids54. 
In cardiac muscle, transient depletions in Ca2+

ext
 by about 200 μM 

were measured during a single heartbeat16. In mouse islets of  
Langerhans and INS-1E pseudoislets, glucose stimulation induced 

a reversible and significant depletion in Ca2+
ext

 by about 500 μM as 
a consequence of VGCC-mediated Ca2+ influx across the plasma 
membrane30,33,39.

New paradigms in extracellular calcium-sensing 
receptor trafficking and signaling pave the way for 
the design of novel, smart drugs
In the classical (yet oversimplified) view, upon interaction with a 
G-protein-coupled receptor (GPCR), ligands stabilize preferred 
conformational state(s) that in turn activate distinct subsets of 
G-protein-mediated downstream signaling pathways56–58. When 
GPCRs are coupled to multiple G-proteins in the same cell type, 
as is the CaR, the old dogma hypothesized that they activate each 
of the downstream signals equally, without preference for any one 
pathway58–61.

In the past few years, several studies have painted a more com-
plex scenario, in which receptors, existing in multiple active 
states, can specifically trigger selected pathways at the exclusion 
of others62. This will depend not only on the signaling toolkit of 
the cell in which they are expressed but also on numerous other  
factors63, such as the localization of the GPCRs, the duration of 
stimulus for GPCRs working in non-equilibrium conditions, the 
downstream signaling protein level (i.e. involvement of differ-
ent effectors able to shape diverse Ca2+ and cAMP microdomains 
and kinetics), and the specific agonist/modulator activating the 
receptor64. Also, it has been shown that GPCRs traffic through 
subcellular compartments such as the nucleus65, mitochondria66, 
and endosomes67,68, where they are capable of initiating specific 
signaling pathways.

In this context, pharmacological studies have shown that ligands 
are able to bias the signaling of their GPCRs towards specific 
intracellular responses and/or are capable of crossing cell mem-
branes, thus activating or rescuing intracellular GPCRs (by acting 
as molecular chaperones)69. The development of new technolo-
gies, such as microscopy techniques and probes to follow receptor 
trafficking63,70 and to assess in real time subcellular signaling 
dynamics71,72 as well as biased signaling73, has been essential for 
such advances and will certainly continue to promote novel and 
exciting discoveries in this field.

The “anti-conformist” extracellular calcium-sensing 
receptor traffics to the plasma membrane via a novel 
route: agonist-driven insertional signaling
In the classical life cycle of GPCRs, the newly synthesized  
receptor is inserted into the endoplasmic reticulum and, after  
folding, is transported through the cis-Golgi/Golgi/trans-Golgi, 
where it goes through further post-translational changes. Then the 
mature protein, packaged in small vesicles, undergoes insertion  
into the cell membrane. If misfolded, the protein is degraded by 
the proteasome. Upon binding, ligands stabilize preferred confor-
mational state(s) of the receptor that initiate intracellular signaling. 
The process is terminated via receptor internalization mediated 
by GPCR kinase (GRK) phosphorylation and β-arrestin(s) 
recruitment74. The internalized receptor can be degraded by the 
lysosome or recycled to the cell membrane. Importantly, both 
β-arrestin and internalized receptors can initiate signaling.
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It is well established that the fine balance among maturation, inter-
nalization, recycling, and degradation can influence the net amount 
of cell surface receptor level and thus represents a mechanism for 
the cell to regulate receptor sensitization and modulate the strength 
of signal transduction75. The intensity of signaling is thus related to 
the quantity of GPCRs expressed on the cell surface and accessible 
for ligand stimulation. This is also true for the CaR, as recently 
demonstrated by Brennan and colleagues76.

Relevant advancements in the knowledge of the key players 
involved in CaR biosynthesis and trafficking have been achieved 
in the last ten years77–81. Both early and recent studies have 
highlighted that two hallmarks of the CaR are the negligible 
functional desensitization and the existence of a significant amount 
of CaR in intracellular membranes. Early studies indicated, both 
by western blotting or immunohistochemistry14,82,83, that CaR 
immunoreactivity reflected a predominantly intracellular, core- 
glycosylated form. It is now becoming clear that such an obser-
vation is not a mere artifact but is strictly related, and even of 
functional importance, to the complex and mutual interaction 
between CaR trafficking and signaling. In fact, both minimal desen-
sitization and high levels of intracellular CaR can be explained 
by the model of agonist-driven insertional signaling (ADIS)78,84.

The process of ADIS depends upon the regulated release of mature 
CaR proteins from a large intracellular pool located in the endo-
plasmic reticulum and Golgi/post-Golgi vesicles. The rate of CaR 
plasma membrane insertion increases as a function of the concen-
tration of CaR agonists and/or allosteric modulators, while the 
receptor already at the plasma membrane undergoes constitutive 
endocytosis without substantial recycling. Importantly, and predict-
ably, in this model, CaR signaling can be dynamically regulated 
by the trafficking of intracellular CaR to the plasma membrane 
through an agonist-dependent modulation of the net amount of CaR 
at the plasma membrane. This has implications in both health and 
disease85.

New insights into the mechanisms underlying the 
therapeutic potential of allosteric modulators of the 
extracellular calcium-sensing receptor
As summarized in Table 1, besides the orthosteric ligands, which 
upon binding to agonist-binding sites are able to stimulate the 
receptor in the absence of Ca2+ (or any other ligand), the other class 
of CaR agonists is represented by allosteric modulators, which after 
binding to different sites alter the receptor conformation and, as a 
consequence, affect receptor responses to orthosteric ligands. This 
action can be exerted in a positive (calcimimetics) or a negative 
(calcilytics [Table 1]) direction.

Interestingly, a number of recent reports have shown that allos-
teric modulators can act as pharmacoperones. Pharmacoperones 
(or pharmacological chaperones or pharmacochaperones) are 
membrane-permeant ligands (agonists, antagonists, or allosteric 
modulators) that reach the misfolded protein at the site of its 
biosynthesis and trafficking (most frequently the endoplasmic 
reticulum) and, by stabilizing the receptor structure, rescue the 
protein to the cell surface69.

Breitwieser’s group has published a number of interesting  
papers highlighting the capability of CaR allosteric modulators to 
function as pharmacoperones86–88. While an early study reported 
the synergistic effect of acute treatment with L-phenylalanine  
and NPS R-467 on CaRs with inactivating mutations89, Breitwieser 
and colleagues first showed that overnight treatment of HEK293 
cells expressing loss-of-function mutant CaRs with the calcimi-
metic NPS R-568 rescued plasma membrane expression and sig-
naling in 50% of the mutations examined86,87. Similar results were  
obtained by other groups, although the authors did not investi-
gate the cell surface expression of CaR after NPS R-568-mediated  
signal rescue90,91. Interestingly, the capability of the calcimimetic 
NPS R-568 to rescue CaR activation without altering the cell 
surface expression of the mutant proteins was shown in a recent 
study92, suggesting a mutant-specific effect of this drug as a  
pharmacoperone.

Relevant findings in this area have also been provided by Leach 
and colleagues93,94. They showed that calcimimetics, including the 
only calcimimetic approved in the clinic (cinacalcet), effectively 
rescue trafficking and signaling of CaR mutants exhibiting a loss 
of cell surface expression. They also found that the calcilytic 
NPS 2143 effectively promotes trafficking of CaR mutants to 
the cell membrane while negatively modulating CaR signaling93,95. 
This is in contrast to other studies with NPS 2143 showing a 
reduced86 or unchanged92 effect on the expression of diverse 
CaR gain-of-function mutants, suggesting that a mutant-specific 
pharmacoperone effect also exists for NPS 2143.

The potential of calcilytics for patients with activating CaR muta-
tions has been further examined in vitro96. More recently, the new 
quinazolinone-derived calcilytics were shown to be effective in 
attenuating enhanced calcium signaling in mutations causing BS 
and ADH97. NPS 2143 was also found to correct signaling defects 
in HEK293 cells transfected with Gα11-mutated proteins causing 
ADH2 and uveal melanoma98. Very interestingly, the effectiveness 
of both old (i.e. NPS 2143)99 and new (i.e. JTT-305/MK-5442)100 
calcilytics was recently assessed in vivo in mouse models 
harboring ADH gain-of-function CaR mutations.

Biased signaling at the extracellular calcium-sensing 
receptor
Recent reports suggest that the therapeutic potential of new  
classes of CaR modulators, as well as the pathophysiological role of 
endogenous agonists, could be further improved by exploiting the 
phenomenon of biased signaling11. Biased signaling (also known as 
ligand-directed signaling, stimulus bias, biased agonism, or func-
tional selectivity)62,101,102 represents a general, albeit only recently 
appreciated, signaling characteristic of GPCRs58. It refers to the 
ability of different ligands to stabilize distinct receptor conforma-
tions and preferentially direct GPCR signaling towards a specific 
set of pathways while excluding/reducing others.

This concept, while greatly complicating the scenario of GPCR  
signaling, opens up new perspectives in the design of smart and 
tissue-specific drugs103. The existence of ligand- and tissue-specific 
effects in the signaling pathways activated by the CaR, although  
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not precisely quantified, is traceable in a vast number of papers  
published throughout the years. In fact, in many cases, biased  
signaling at the CaR might have been underestimated owing to the 
use of single assays for the evaluation of CaR signaling outputs 
(most commonly cytosolic calcium dynamics) or the low number 
of CaR agonists and modulators tested.

A peculiar case of biased signaling at the CaR was observed in 
response to an allosteric autoantibody isolated from a patient 
with acquired hypocalciuric hypocalcemia. The antibody poten-
tiated the effects of Ca2+

ext
 via Gq signaling while suppressing  

Gi-mediated signaling104. In other examples, Bruce and colleagues 
reported differential effects of CaR agonists on Ca2+ dynam-
ics in isolated acini and interlobular ducts of rat pancreas105.  
Ziegelstein showed that in human aortic endothelial cells only  
spermine was able to induce intracellular Ca2+ release and nitric 
oxide production, whereas Ca2+

ext
, Gd3+, and neomycin were  

ineffective106. Furthermore, Smajilovic et al. demonstrated a  
concentration-dependent vasodilatation in rat aorta with the  
addition of cinacalcet, whereas the agonists neomycin and Gd3+ 
were ineffective107.

On these bases, in the last three years, an increasing number of 
reports have focused on the physiological and pathological role of 
biased signaling exerted on the CaR by its physiological agonists 
and pharmacological modulators as well as on mutation-dependent 
alterations in such bias. A key contribution to this field comes from 
the group of Bräuner-Osborne108–110. By exploring the effect of 12 
orthosteric CaR agonists on inositol (1,4,5)-trisphosphate (IP

3
) 

accumulation, cAMP inhibition, and ERK1/2 phosphorylation 
in HEK293 cells stably transfected with rat CaR, Thomsen and 
colleagues110 revealed that Ca2+

ext
 is biased towards cAMP inhi-

bition and IP
3
 accumulation, while spermine shows a strong bias 

towards ERK1/2 phosphorylation. Also, this study demonstrated 
for the first time that ERK1/2 is partially activated through the 
recruitment of β-arrestin by the CaR. The same group also obtained 
interesting results concerning strontium ranelate, currently used 
in the clinic for the treatment of osteoporosis109. As previously 
suggested by Chattopadhyay and colleagues111, and contrary to 
the results obtained by Coulombe112, Sr2+ was shown to bias CaR 
signaling towards ERK1/2 in rat medullary thyroid carcinoma 
6–23 cells. Also, in rabbit osteoclasts, while both Sr2+ and Ca2+ 
produced stimulation of PLC and translocation of NF-kB, in con-
trast to Ca2+

ext
, Sr2+ signaling was independent of the IP

3
 pathway 

and induced apoptosis via PKC activation113.

The possibility of exploiting biased agonism at the CaR has 
been extensively explored by the group of Christopoulos and  
Leach93,114–116. These authors analyzed the effect of calcimimet-
ics and calcilytics on a number of CaR mutations115 (reviewed in 
95,103), demonstrating that mutated CaR proteins can display 
altered signaling bias. Importantly, and as stated above, both cina-
calcet and NPS 2143 were shown to effectively rescue mutants 
to the cell membrane, with a bias of both compounds toward the  
modulation of agonist-stimulated Ca2+ mobilization93. There is no 
doubt that these results have relevant therapeutic potential.

To date, cinacalcet has been used for the treatment of hyperpar-
athyroidism and to correct Ca2+

ext
 in patients with loss-of-function 

CaR mutations. However, because of its hypocalcemic side effects, 
presumably due to CaR-mediated calcium-dependent calcitonin  
secretion from thyroid parafollicular C-cells108 and potentiation of 
renal CaRs, its use has been restricted to patients with end-stage 
renal disease. Thus, a drug that suppresses PTH secretion without 
raising serum calcitonin would be therapeutically advantageous.

Potential clues towards the search for a calcimimetic with low/no 
effect on calcitonin was hinted at in a very recent paper94. In this 
work, the authors demonstrated that while phenylalkylamine  
calcimimetics were biased towards Ca2+ mobilization and IP

1
  

accumulation (a stable metabolite of IP
3
), R,R-calcimimetic B 

and AC-265347 biased CaR signaling towards pERK1/2 and IP
1
  

accumulation. This finding may explain the preference of R,R- 
calcimimetic B and AC-265347 for the suppression of PTH  
release versus the stimulation of calcitonin secretion in vivo. 

Structure-function relationships and future prospects
Recent work explored the structural requirements for bias and  
allostery mediated by old and new classes of positive and negative 
allosteric modulators of the CaR116. Further, Jenny Yang’s lab has 
published several papers about the potential Ca2+ binding sites and 
their relevance for related diseases117–124. Recently, these authors 
solved the first high-resolution crystal structure of the ECD of 
human CaR bound with Mg2+117. Of note, a high-affinity tryptophan 
derivative was found in the crystal structure of the CaR that seems 
to play a role in potentiating the function of the receptor117. These 
studies represent important progress in the field, since they provide 
new insights into the structural basis of human diseases arising 
from CaR mutations. Ultimately, the subtle differences in modula-
tor binding sites revealed by structural studies may be exploited to 
design drugs able to elicit distinct signaling outcomes and thus be 
effective on specific mutations (patient-specific drugs) and/or on 
tissue-specific signaling pathways (tissue-specific drugs).

In this scenario, a fundamental challenge for future research will 
be to set up methodological tools to validate these latest pharma-
cological advances in more physiologically relevant models, such 
as primary cells or animal models. It also remains to be seen how 
the functional effects of these drugs are altered in the complex 
landscape of changing [Ca2+] in extracellular microdomains 
in vivo.
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